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ABSTRACT
Cloud computing has revolutionized data processing and manage-
ment, offering flexible and scalable infrastructure for the distribu-
tion of content, computing power, and services across the globe.
Dynamic, flexible, and transparent reallocation of resources in-
creases cloud-based services’ use and effectiveness. As rates of
cloud adoption soar, privacy regulations, and geopolitical security
introduce new challenges, which include the assessment, validation,
and enforcement of data geolocation. However, currently, there is
no standardized benchmark for this research domain. Therefore,
this paper presents a novel dataset of measurements specifically
designed to evaluate cloud data geolocation algorithms. In addition
to its beneficial role in evaluating data geolocation algorithms, our
dataset can be used for other data geolocation subtopics.

CCS CONCEPTS
• Security and privacy→ Security protocols;Database and stor-
age security; Operating systems security; • Software and its
engineering→Contextual software domains; • Information sys-
tems → Storage architectures; Cloud based storage.
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1 INTRODUCTION
The rapid evolution of cloud computing has revolutionized data
processing and management, offering organizations unparalleled
flexibility and scalability in handling their data [14]. As businesses
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increasingly rely on cloud infrastructure to store critical informa-
tion, ensuring data security and compliance with geographical
regulations has become a pressing concern [17].

A crucial issue in cloud data management is the geolocation of
cloud-stored data. Geolocation involves determining the physical
location of data, which has significant implications for data privacy,
data residency requirements, and user experience [5]. Governments
and regulatory bodies worldwide have established data residency
regulations to safeguard sensitive information [14]. For instance, the
European Union (EU)’s General Data Protection Regulation (GDPR)
mandates that the personal data of EU citizens must be stored
and processed within the EU or in countries with equivalent data
protection regulations [2]. Failure to comply with the GDPR can
result in substantial fines and penalties for businesses operating in
the EU or handling EU citizens’ data.

Data residency [5] requirements dictate that specific types of
data must be stored and processed within designated geographic
regions or jurisdictions. As a result, organizations must ensure that
the location of their data complies with these regulations to avoid
legal repercussions and protect their reputation.

Data sovereignty [17] emphasizes that data is subject to the
laws and regulations of the country or region where it is stored.
Organizations may prefer storing data within their own country’s
jurisdiction to maintain sovereignty over sensitive information.

Accurate geolocation of cloud data is challenging due to the dis-
tributed nature of cloud infrastructure [11]. Cloud Service Provider
(CSP)s often have data centers located in multiple countries to en-
sure redundancy and availability and improve performance. This
distributed setup introduces complexities in tracking and ensuring
the precise physical location of data.

In this paper, we propose a novel dataset of measurements specif-
ically designed to enable benchmarking of cloud data-geolocation
algorithms. Creating a standardized dataset has become necessary
to establish a unified paradigm in the domain of data geolocation
within cloud environments. The dataset will promote research and
advancements in this research domain, by enabling the evaluation of
cloud data geolocation algorithms by measuring their performance
and comparing them against each other. The main contributions of
this paper can be summarized as follows:

• We introduce and define the challenge of data geolocation
in cloud environments.

• We present a dataset of real-world measurements that can
be used to evaluate data geolocation algorithms.
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The remainder of this paper is structured as follows: Section 2
provides an overview of various aspects of the cloud architecture
and the challenges associated with data geolocation. Section 3 dis-
cusses related work in data geolocation. In Section 4, we describe
the systemmodel and methodology used to build the dataset, and in
Section 5 we provide a description of the dataset. Our conclusions
and ideas for future work are presented in Section 6.

2 DATA GEOLOCATION CHALLENGES
Cloud computing has revolutionized the data management land-
scape, offering organizations a flexible and scalable solution for stor-
ing and processing vast amounts of data. Cloud Service Providers
(CSPs) maintains a distributed network of data centers and servers
in various geographic regions to ensure redundancy, availability,
and improved performance. This cloud architecture enables effi-
cient resource allocation and seamless scalability to accommodate
fluctuating demands.

2.1 Cloud Architecture
The cloud computing architecture involves the design and config-
uration of the cloud infrastructure and services. It relies on virtu-
alization technology to create virtualized instances of computing
resources, enabling multiple virtual machines (VMs) to run on
a single physical server. A hypervisor (Virtual Machine Monitor
(VMM)) manages and controls the VMs, ensuring optimized re-
source allocation and preventing contention, while the networking
infrastructure facilitates secure communication and data transfer
between cloud resources. Various data storage solutions and cloud
databases are used for efficient data handling and management.

Orchestration and automation tools streamline resource provi-
sioning and management, and load balancing mechanisms distrib-
ute incoming network traffic across servers to prevent overloading.
Security measures, real-time monitoring, logging mechanisms, and
API integration contribute to the architecture’s robustness, while
auto-scaling mechanisms, which adapt resources based on demand,
contribute to scalability and elasticity. The latter is also achieved
due to cloud applications’ decoupling of storage and compute re-
sources; such decoupling enables scaling based on an application’s
specific needs. Furthermore, the storage and compute nodes’ physi-
cal (geographical) locations need not be the same.

Data geolocation challenge: On the one hand, the three-tier ar-
chitecture (illustrated in Figure 1), with its independent distribution
of storage and computation resources, increases the flexibility of
data deployment, but on the other hand, it obscures the geolocation
of the data, hiding it behind the second (application) tier. Geolocat-
ing these nodes is a challenging task: The data storage nodes are
not visible to the end-user. Consequently, they cannot be pinged
and thus cannot be directly geolocated. In addition, the computa-
tion nodes’ physical properties (e.g., CPU) may affect any delay
measurements collected by a data geolocation framework.

2.2 Cloud Caching
Distributed caching is a critical aspect of cloud computing that
aims to improve data access times and reduce latency for frequently
accessed data. Caching involves storing copies of data closer to

the end-users or applications, reducing the need to retrieve the
data from the original data source, such as a database or remote
server. This caching mechanism significantly enhances cloud-based
services and applications’ overall performance and responsiveness.

Cache servers are dedicated servers within the cloud infrastruc-
ture that host the cached data. Caching algorithms determine which
data should be stored in the cache memory and which data should
be evicted to make room for new data. Common caching algorithms
include Least Recently Used (LRU), First-In-First-Out (FIFO), and
random replacement.

In a distributed cloud environment with multiple data centers,
cache replication, and distribution techniques ensure that cached
data is available across different locations to serve requests from
users in various geographic regions. Replicating cache data strate-
gically across data centers enhances data availability and reduces
data access latency.

Data geolocation challenge: The dynamic, volatile nature of
distributed caching makes data geolocation very difficult when
cloud-based services rely on caching to improve the quality of ser-
vice. First, caching mechanisms and the data movement are opaque,
preventing external observers from tracing data between servers.
Second, the exact location of the caching servers may not be known
to external entities that would like to validate the data location.
Third, probing, the most common building block of geolocation,
may affect the cache, changing the location of the data items under
investigation.

2.3 Cloud DNS Load Balancer
In cloud computing, a Domain Name System (DNS) load balancer is
a dynamic and resource-efficient mechanism for distributing incom-
ing traffic across multiple servers or endpoints. Unlike traditional
hardware load balancers, a DNS load balancer utilizes the DNS
infrastructure to distribute traffic, enabling it to contribute to scala-
bility, fault tolerance, and high availability in cloud environments.

In this approach, multiple IP addresses are associated with a
single domain name, pointing to a different server or resource
within the cloud infrastructure. When a client initiates a connec-
tion by querying the DNS server for the domain name, the DNS
load balancer responds with a list of these IP addresses. Clients
then establish connections to the respective servers based on the
IP addresses listed. This decentralized method ensures the even dis-
tribution of incoming requests, preventing any single server from
becoming overloaded.

While DNS load balancing is simple and cost-effective, it has
limitations. Due to caching mechanisms, changes to IP addresses
might not be immediately reflected for all clients, potentially leading
to uneven traffic distribution. Furthermore, DNS load balancers lack
advanced traffic management features such as session persistence
and real-time health checks.

Data geolocation challenge: Each time a probe initiates a session
to a service that employs load balancing, the server that handles
the requests and its geolocation may change, causing high vari-
ability and inconsistency between measurements. As a result, load
balancers impair the reproducibility of data geolocation.
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3 RELATEDWORK
In this section, we review related work in cloud data geolocation.

Gondree and Peterson [8] introduced a general framework for ge-
olocating data that is stored in the cloud. The authors claimed that
standard IP geolocation methods do not apply to cloud infrastruc-
ture, since the data is stored in data centers that are hidden behind
the cloud infrastructure. To overcome this problem, they proposed
a solution that combines a standard geolocation method called
Constraint-Based Geolocation (CBG) with Proof of Data Posses-
sion (PDP) techniques. Their evaluation of the proposed framework
demonstrated its ability to achieve state-level accuracy, however,
the study is limited given the fact that they did not specify whether
their geolocation method is based on the Internet Control Message
Protocol (ICMP) or HTTP messages. Moreover, they assumed that
all data are held jointly by some set of target data centers whose
physical distance from one another is large enough to be distin-
guishable. This, of course, assumes a very basic cloud architecture.

Zhang et al. [15] introduced Splitter, which is based on an im-
proved version of CBG [8]. The proposed solution uses a PDP
scheme based on “weak" and “strong" proofs. The “weak" proofs are
used to measure the Round-Trip Time (RTT) for probing the server,
and the “strong" proofs are used to validate the correctness of data
possession in the server. The proposed method employs a random
forest model to transform timing information into distances, which
is accurate than the linear delay-distance transformation used in [8].
Splitter introduces an improved triangulation method that consid-
ers lower distance bounds to the server, however, the triangulation
method assumes that probing the data centers with ICMP requests
is possible, which is not the case in today’s cloud services.

Noman et al. [13] proposed HDLAS, which extends their pre-
vious work. The proposed solution allows the user to store data
in preferred locations and receive a provable assurance from the
CSP. The authors assume a direct connection to the data center
that stores the data. In addition, the proposed solution proves the
authenticity of the data but does not geolocate it.

Albeshri et al. [3] proposed GeoProof, validating that the data is
stored according to the Service-Level Agreement (SLA). Using the
MAC-based Proof of Retrievability (PoR) scheme, a basic verifier-
prover distance-bounding protocol and a tamper-proof device that
is included in the cloud’s LAN networks. Enhanced GeoProof [4]
reduces the computational overhead on the server side by using a
modified Proof of Storage (PoS) algorithm, improving the geoloca-
tion accuracy.

SecLoc [12] is a cryptographic-based framework that securely
stores the data encrypted in the cloud so that decryption can only
be performed in specified locations. SecLoc does not rely on any
trusted equipment in the cloud servers or requires maintaining
many keys, however a trusted region server (independent of the
cloud) is needed, and it assumes that the CSP and regional servers
are not being attacked simultaneously.

Eskandari et al. [7] proposed VLOC, which verifies the physical
location of a VM on which the customer’s applications and data
are stored. VLOC uses several arbitrary web servers as external
landmarks for localization and employs network latency measure-
ment to estimate distance. Using measurement-based geolocation
techniques based on HTTP requests, it probes landmarks and uses

machine learning techniques to estimate the location of the target
host in which it is executed.

Abid et al. [10] proposed a geolocation solution dedicated to
Internet of Things (IoT) devices that store data in the cloud. The
proposed geolocation scheme is based on PDP, similar to [8]. During
the geolocation process, the CSP is challenged to retrieve random
data blocks, and the retrieval RTT is measured. Then, the user
validates the proofs received from the cloud and evaluates the
distance to the cloud.

Reliablebox [9] is a secure framework for ensuring the data
storage location. The client first computes integrity tags and then
outsources the tags and files to the cloud storage server. In the
later attestation, with the precise network delay and distance mea-
surement from location-known verifiers, the client verifies that the
outsourced files are intact and backed up on hosts at the specific
geolocation. The simulations of Reliablebox show low accuracy
of the data geolocation. Table 1 shows a comparison between the
related works according to various criteria.

None of the prior studies mentioned above considered the multi-
tier cloud architecture and did not reflect the real challenge of data
geolocation. We argue that a reliable and accurate data geolocation
method should consider an entire architecture. In addition, to the
best of our knowledge, no previous work proposed a mechanism
or a dataset to evaluate data geolocation methods.

4 DATA COLLECTION FRAMEWORK
4.1 Relevant AWS components
In this research, Amazon Web Services (AWS) was used to create a
cloud environment. As officially published by Amazon [6], at the
time of this writing, the AWS infrastructure consisted of primary
regions in which Amazon data centers were established. Regions
are referenced by a state-level name and their region code; for
example, N. Virginia (us-east-1) or London (eu-west-2).

Each region has at least three availability zones, separated by
up to 100 km for disaster tolerance. Availability zones are noted by
region code followed by an alphabetic letter identifier; for example,
us-east-1a and us-east-1b are both availability zones of N. Virginia.

AWS S3 (Simple Storage Service) is a storage service provided by
Amazon. In this research, S3 buckets were used in different regions
worldwide to store files. We also used AWS EC2 (Elastic Compute
Cloud), a service for computing resources on demand. The EC2
instances were initialized in different regions to run HTTP servers
representing a cloud-based service’s front end. All EC2 instances
were set up using t2.micro with the Amazon Linux 2023 AMI image.

The Cloud Data Geolocation Benchmark (CDGeB) service sup-
ports a single query that retrieves one named file through the REST
API. The query should be directed to a specific front end, which
locates the file, retrieves it from the relevant S3 bucket, and returns
it to the client. The response times measured by the client, depend
on the locations of the front-end and the file, as well as on the
characteristics of the instances and their local state.

Figure 1 presents the 3-tier data geolocation measurement infras-
tructure. S3 buckets and EC2 cloud front-end servers are located
in two overlapping sets of data centers. First, a client (white tag)
requests a file using the REST API. Then, in the second step, the
front-end server retrieves the data file. In steps 3 and 4, the file is
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Articles Subject Year Method used Dataset used Assumes caching Assumes a front-end server

[3] cloud data geolocation 2012 PoS and distance bounding
protocol ✗ ✗ ✗

[8] framework for data geolocation
and verification 2013 basic geolocation and PDP ✗ ✗ ✗

[13] hardware-based data geolocation
for cloud storage. 2014

a trusted platform module and
a PDP are implemented
on a dedicated chip which a GPS

✗ ✗ ✗

[4] enhanced version of
GeoProof [3] 2014 modified PoS algorithm ✗ ✗ ✗

[7] geolocation of VMs
in the cloud 2014 planted software on the VM and

delay-based triangulation ✗ ✗ ✗

[12] secure data geolocation 2015 PoS with encryption ✗ ✗ ✗

[16] secure distributed data geolocation
scheme 2019

combination of proof of retrievability
and the delay-based geolocation
techniques

✗ ✗ ✗

[10] cloud data geolocation for IoT 2020 PDP and multiagent-based approach ✗ ✗ ✗

[15]
determines the geolocation of
cloud data stored in a
semi-honest CSP publicly

2020 combination of random forest algorithm
and an improved triangulation method ✗ ✗ ✗

[9] secure and verifiable cloud
storage 2021 challenge-based PoS and delay-

based triangulation ✗ ✗ ✗

Table 1: Related work

delivered to the client through the front-end server. The measured
RTT includes these four steps.

4.2 Definitions
The following naming conventions were used throughout the rest
of this paper:

• Challenge-i - describes a featured challenge within the pro-
posed benchmark, with index i.

• cdgeb-probe-i - describes the probing server located in region
i, according to the list of probing servers regions described
in Section 4.4.

• cdgeb-server-i - describes the front-end server located in
region i, according to the list of regions in Section 4.3.

• cdgeb-file-i - describes a file stored in the cloud storage ser-
vice. i does not follow the numbering system described in
Section 4.3. cdgeb-file-1 in particular does not necessarily
reside in the same region as cdgeb-server-1.

4.3 System Model
Our service comprises S3 buckets, sample files stored in S3 buck-
ets, and EC2 servers that function as the front-end servers of our
application. The AWS regions used are:

(1) US East (N. Virginia) us-east-1
(2) EU (London) eu-west-2
(3) South America (São Paulo) sa-east-1
(4) Asia Pacific (Tokyo) ap-northeast-1
(5) Asia Pacific (Singapore) ap-southeast-1
(6) Canada (Central) ca-central-1
(7) US East (Ohio) us-east-2
(8) US West (N. California) us-west-1
(9) US West (Oregon) us-west-2
(10) Asia Pacific (Mumbai) ap-south-1
(11) Asia Pacific (Osaka) ap-northeast-3
(12) Asia Pacific (Seoul) ap-northeast-2
(13) Asia Pacific (Sidney) ap-southeast-2
(14) EU (Frankfurt) eu-central-1
(15) EU (Ireland) eu-west-1
(16) EU (Paris) eu-west-3

(17) EU (Stockholm) eu-north-1

The regions are denoted using a numerical convention through-
out this paper (e.g., region AWS-01 refers to us-east-1). Correspond-
ingly, all EC2 instances are named based on the same numerical
listing (e.g., cdgeb-server-1 is located in region AWS–01). However,
this numerical convention does not apply to file naming conven-
tions (e.g., cdgeb-file-1 does not necessarily imply that the file is
located in region AWS-01).

We developed server-side software that runs on each EC2 in-
stance. The server exposes a REST API, enabling Internet clients
to request specific files from our cloud-based service. Upon receiv-
ing such a request, the EC2 instance initiates a retrieve request
from the corresponding S3 bucket. Then, the requested file is trans-
ferred from the region in which the S3 bucket resides to the region
in which the EC2 instance is located. Finally, the requested file
is transferred back to the Internet client. The probing process is
illustrated in Figure 1.

4.4 Probing
To probe the front-end servers, a total of 14 instances of Google
Cloud Platform services were employed as Internet clients, dis-
tributed across the following locations:

(1) northamerica-northeast1 (Montreal)
(2) northamerica-northeast2 (Toronto)
(3) southamerica-east1 (Sao Paulo)
(4) us-west1 (Oregon)
(5) us-west2 (Los Angeles)
(6) europe-central2 (Warsaw)
(7) europe-north1 (Finland)
(8) europe-southwest1 (Madrid)
(9) me-central1 (Doha)
(10) me-central2 (Tel Aviv)
(11) asia-east1 (Taiwan)
(12) asia-east2 (Hong Kong)
(13) asia-northeast1 (Tokyo)
(14) asia-northeast2 (Osaka)
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Figure 1: The 3-tier data geolocation measurement infrastructure. Black tags represent the real locations of the AWS data
centers used to generate the data. White tags represent the real locations of the client applications hosted at Google data
centers.

Each of these clients probed the cloud-based service. Each client
is configured to probe a specific file in a specific location by re-
questing it from a front-end, however, the requested file and the
front-end server are not necessarily in the same location.

5 BENCHMARK
This section describes the dataset used for the data geolocation
benchmark.

The dataset consists of timing measurements from the probings
conducted using the described system. Each one of the probe clients
(cdgeb-probe-i) retrieves each one of the files (cdgeb-file-i) through
multiple front-end servers (cdgeb-server-i).

The entries within the dataset are categorized into two distinct
challenges that we introduce within this benchmark. The two chal-
lenges have varying levels of complexity in the task of geolocating
cloud data. Using the provided dataset, a researcher is expected to
determine the specific physical region in which any file within a
challenge is situated.

Each line in the dataset contains the following information:

• Difficulty - Challenge-i, (i=1,2)
• Probe - cdgeb-probe-i, (i=1..14)
• Front Server - cdgeb-server-i, (i=1..17 )
• Data File - cdgeb-file-i, (i=1..17 )
• RTTs - values of 20 sequential probings, in units of seconds

Challenge-1 and Challenge-2 correspond to two difficulty levels.
Challenge-1 consists of the measurement of files 1-5 (cdgeb-file-01,
.., cdgeb-file-05), and Challenge-2 consists of the measurement of
files 6-17.

Challenge-1 Challenge-2
Total number of
measurements

11,200 26,880

Number of probes 14 14
Number of files 5 12
Number of front-
end servers (per
file)

8 8

Repetitions per
probe-server-file
tuple

20 20

First RTT - mean
(STD)

0.899 (0.468) 0.967 (0.399)

RTT without first
– mean (STD)

0.445 (0.203) 0.453 (0.238)

Avg. value of min.
RTT out of any 20
repetitions (STD)

0.438 (0.200) 0.446 (0.186)

Table 2: Dataset statistics

In both Challenge-1 and Challenge-2, a random set of 8 front-end
servers is chosen for the retrieval of each individual file. How-
ever, the challenges differ in their level of difficulty. In the easier
Challenge-1, one server out of the 8 is located in the same geograph-
ical region as the retrieved file. In contrast, in the more difficult
Challenge-2, none of the front-end servers within the set reside in
the same geographical region as the corresponding file.

To collect the measurements, 14 different probes were employed,
probing 17 front-end servers for a selection of 14 files. However, not
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Difficulty Probe Front Server Data File RTT #1 RTT #2 RTT #3 RTT #4 RTT #5
Challenge-1 cdgeb-probe-14 cdgeb-server-12 cdgeb-file-01 0.271192 0.10165 0.104269 0.114672 0.111449
Challenge-2 cdgeb-probe-08 cdgeb-server-11 cdgeb-file-07 1.120666 0.62014 0.619905 0.614746 0.620332
Challenge-2 cdgeb-probe-14 cdgeb-server-16 cdgeb-file-06 1.104429 0.629728 0.619708 0.639373 0.624838
Challenge-2 cdgeb-probe-07 cdgeb-server-11 cdgeb-file-13 0.905342 0.600389 0.601311 0.597241 0.595656
Challenge-1 cdgeb-probe-13 cdgeb-server-15 cdgeb-file-03 1.434679 0.687423 0.692032 0.690057 0.693404
Challenge-1 cdgeb-probe-05 cdgeb-server-12 cdgeb-file-04 1.430711 0.548741 0.547811 0.547604 0.548021
Challenge-2 cdgeb-probe-01 cdgeb-server-12 cdgeb-file-10 2.401201 0.609209 0.609948 0.61107 0.611052
Challenge-2 cdgeb-probe-14 cdgeb-server-12 cdgeb-file-16 1.287669 0.365719 0.360802 0.361502 0.354872
Challenge-2 cdgeb-probe-04 cdgeb-server-05 cdgeb-file-10 1.033584 0.489651 0.484646 0.488195 0.488279

Table 3: Dataset demonstration

all possible combinations of probe-server-file were used, specifically
to present the defined challenges. Within this framework, a total of
1,904 unique probe-server-file tuples were employed. For each tuple,
the probing process was iterated 20 times consecutively, culminat-
ing in a total of 38,080 measurements. Table 2 provides statistical
information about the dataset, as well as Standard Deviation (STD).

Table 3 provides a dataset example, presenting a partial subset of
the dataset due to its extensive size. The leftmost column indicates
the challenge corresponding to the record. The three to the right of
it refer to the probing client used in the measurement, the front-
end server used, and the name of the file requested. The remaining
columns contain the RTT values from sequential measurements.

The benchmark was published on September 19, 2023, on the
Kaggle platform as a community competition: https://www.kaggle.
com/c/cloud-data-geolocation-1-multi-tier-services [1]

6 CONCLUSION AND FUTURE PLANS
Cloud data geolocation plays a pivotal role in modern cloud comput-
ing, focusing on strategically distributing data across global regions.
This paper explored its significance, mechanisms, and implications.

Organizations address data sovereignty, compliance, and perfor-
mance optimization by situating data in specific locations. Tech-
niques like Content Delivery Networks (CDN) and distributed stor-
age systems enhance data access speed and fault tolerance.

However, challenges arise from the various regulations, demand-
ing a balanced approach. Effective implementation requires collabo-
ration between legal experts, IT professionals, and cloud providers.
Related works proposed data geolocation solutions without consid-
ering the multi-tier cloud architecture. In addition, a framework
for benchmarking a geolocation system is required.

Therefore, in this paper, we proposed a novel dataset of mea-
surements specifically designed to enable benchmarking of cloud
data geolocation algorithms. We believe that the publication of this
dataset will facilitate the entry of researchers into the field and
promote advancements in this research domain.

In future research, our dataset could be expanded to consider
data caching or DNS load balancing, and an evaluation scheme for
the comparison of data geolocation methods could be explored. In
addition, further research should be performed to create new data
geolocation algorithms that consider multi-tier cloud architecture.
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